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Abstract

A macroscopic yield function for porous solids with pressure-sensitive matrices modeled by Coulomb’s yield

function was obtained by generalizing Gurson’s yield function with consideration of the hydrostatic yield stress of a

spherical thick-walled shell and by fitting the finite element results of the yield stresses of a voided cube. The macro-

scopic yield function is valid for the negative hydrostatic stress as well as for the positive hydrostatic stress. From the

yield function, a plastic potential function for the porous solids was derived either for plastic normality flow or for

plastic non-normality flow of the pressure-sensitive matrices. In addition, void nucleation was modeled by a normal

distribution function with the macroscopic hydrostatic stress regarded as a controlling stress. This set of constitutive

relations was implemented into a finite element code ABAQUS as a user material subroutine to analyze the cavitation

and the deformation behavior of a rubber-modified epoxy around a crack tip under the Mode I plane strain conditions.

By comparing the cavitation zone and the plastic zone obtained in the analysis with those observed in an experiment,

the mean stress and the standard deviation for the void nucleation model could be determined. The cavitation and the

deformation behavior of the rubber-modified epoxy were also analyzed around notches under four-point bending. The

size and shape of the cavitation zone and the plastic zone were shown to be in good agreement with those observed in an

experiment. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In contrast to the classical plasticity theories, experiments showed that yielding of metals or polymers is
dependent on the hydrostatic stress (Sternstein and Ongchin, 1969; Rabinowitz et al., 1970; Sauer et al.,
1973; Spitzig et al., 1975, 1976; Spitzig and Richmond, 1979). The dependency of yielding on the hydro-
static stress, so called the pressure-sensitivity of yielding, has been modeled by Coulomb’s yield function. In
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addition, if there exist microvoids or soft inclusions even in a solid (matrix) which does not show any
pressure-sensitivity of yielding, the macroscopic yielding of the solid becomes pressure-sensitive. Taking
into account the macroscopic pressure-sensitivity of yielding, Gurson (1975, 1977) developed a yield
function for porous solids.

It has been well known that some brittle polymers can be toughened by adding rubber particles. For
example, rubber-modified epoxies are 10 times or more tougher than epoxy resins (Yee and Pearson, 1986;
Pearson and Yee, 1986, 1991). Yee and his colleagues (Yee and Pearson, 1986; Pearson and Yee, 1986,
1991; Yee et al., 1993) showed that as a rubber-modified epoxy deforms, rubber particles cavitate and
massive shear yielding occurs subsequently around the cavitated rubber particles, and this massive shear
yielding is the major toughening mechanism. The cavitation which plays a key role in the toughening
process can be considered as void nucleation occurring in the composite material of the epoxy matrix and
rubber particles. In addition, in order to analyze the plastic deformation of the composite material it is
necessary to take into account both the pressure-sensitivity of the matrix and the macroscopic pressure-
sensitivity of the composite material due to nucleated voids.

The author (1992; Jeong and Pan, 1995) developed a yield function for porous solids with pressure
sensitive matrices, and used the yield function to analyze the cavitation and the plastic deformation of a
rubber-modified epoxy around a crack tip. The author regarded cavitation as void nucleation controlled
by the sum of the matrix flow stress and the macroscopic hydrostatic stress. Lazzeri and Bucknall (1993)
also developed a different yield function for porous solids with pressure-sensitive matrices, and they used
their yield function to show that the shear band formed under plane strain deformation rotates toward
the perpendicular direction to the major principal stress direction as the void volume fraction increases. Al-
Abduljabbar and Pan (1999) noted experimental results (Pearson and Yee, 1986, 1991; Yee et al., 1993)
that rubber particles in a rubber-modified epoxy cavitate only under the positive hydrostatic stress, and
the particles start to cavitate before noticeable plastic deformation. They also argued that a rubber-
modified epoxy under the positive hydrostatic stress can be regarded as a porous solid, but under
the negative hydrostatic stress it can be regarded as a non-porous solid. Therefore, in the analysis of the
material behavior of a rubber-modified epoxy around notches under four-point bending they used
the yield function developed by the author (1992; Jeong and Pan, 1995) for the positive hydrostatic
stress, but they used a linear yield function of Coulomb’s yield function type for the negative hydrostatic
stress.

It is noteworthy that even though the yield functions proposed by the author (1992; Jeong and Pan,
1995), Lazzeri and Bucknall (1993), and Al-Abduljabbar and Pan (1999) were successfully used in each
analysis mentioned above, the yield functions cannot be applied to porous solids with pressure-sensitive
matrices under the negative hydrostatic stress. The yield functions developed by the author (1992; Jeong
and Pan, 1995), and Lazzeri and Bucknall (1993) are not defined for the negative hydrostatic stress. The
linear yield function proposed by Al-Abduljabbar and Pan (1999) is valid for a rubber-modified epoxy in
which rubber particles do not cavitate under the negative hydrostatic stress, but it is not valid for porous
solids under the negative hydrostatic stress. Therefore, in this paper a new yield function, which is valid for
the negative hydrostatic stress as well as for the positive hydrostatic stress, was developed for porous solids
with pressure-sensitive matrices. From the yield function, a plastic potential function for the porous solids
was derived either for plastic normality flow or for plastic non-normality flow of pressure-sensitive matrices.

In addition to the new yield function and the plastic potential function, elastic relations, an evolution
rule of the flow stress of the matrices, a consistency equation, a void nucleation model and a void volume
evolution equation were presented to complete a set of constitutive relations. The set of constitutive re-
lations was implemented into a finite element code ABAQUS as a user material subroutine. By using the user
subroutine, the cavitation and the deformation behavior of a rubber-modified epoxy (DER331/Pip/CTBN-
8(10)) were analyzed around a crack tip under the Mode I plane strain conditions, and they were also
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analyzed around notches under four-point bending. Unlike Al-Abduljabbar and Pan (1999) who regarded
rubber particles as voids from the very beginning of deformation and ignored cavitation, the author re-
garded cavitation as void nucleation occurring in the rubber-modified epoxy.

In order to mathematically represent void nucleation, a normal distribution function was proposed to
use by Chu and Needleman (1980). Since then, two models have been used; one is the stress-controlled void
nucleation model, and the other is the plastic strain-controlled void nucleation model. For the stress-
controlled void nucleation model the sum of the tensile flow stress and the macroscopic hydrostatic stress
was used as a controlling stress in many researches (e.g. Tvergaard, 1982b; Pan et al., 1983; Needleman and
Tvergaard, 1987; Jeong, 1992; Jeong and Pan, 1995, 1996). The sum was suggested to be an approximation
to the maximum stress transmitted across the particle–matrix interface, and void nucleation was believed to
depend on the sum (Argon and Im, 1975). In this paper this void nucleation model is named the maximum
stress-controlled void nucleation model. However, it is noteworthy that several experiments showed cir-
cular cavitation zones around a crack tip in rubber-modified epoxies (Pearson and Yee, 1991; Yee et al.,
1993), and the shape of the cavitation zones is similar to that of the contour plots of the macroscopic
hydrostatic stress. In addition, Lazzeri and Bucknall (1993, 2000) derived an equation for a critical volu-
metric strain required to cause cavitation, and they showed that the critical volumetric strain was in good
agreement with experimental results. Thus, it is appropriate to use the macroscopic hydrostatic stress as a
controlling stress in modeling the void nucleation (cavitation) process. This void nucleation model is named
the hydrostatic stress-controlled void nucleation model.

The void nucleation models of the normal distribution function type have three material constants to be
determined: the volume fraction of void nucleating particles, the standard deviation and the mean value.
Since the volume fraction of void nucleating particles in a rubber-modified epoxy is equal to that of rubber
particles, it can be easily determined. However, the other two constants cannot be easily determined. In
many researches using one of the void nucleation models (e.g., Chu and Needleman, 1980; Pan et al., 1983;
Jeong and Pan, 1995, 1996), the standard deviation and the mean value were somewhat arbitrarily de-
termined, and their effects were analyzed by conducting a parametric study.

However, in this paper the standard deviation and the mean value used in the hydrostatic stress-con-
trolled void nucleation model were determined by comparing the simulation results of the material behavior
around a crack tip with experimental results. From the asymptotic solutions of the stress field around a
crack tip under the Mode I plane strain conditions, the contour plots of the macroscopic hydrostatic stress
can be obtained. By comparing the contour plots with the circular cavitation zone observed in an exper-
iment, the hydrostatic stress causing cavitation could be determined. Then, the standard deviation and the
mean value were selected in a way that the integral of the hydrostatic stress-controlled void nucleation
model from the zero hydrostatic stress to the hydrostatic stress causing cavitation was equal to the void
volume fraction at the edge of the cavitation zone. In other words, when one of the two constants was
selected, the other was fixed. However, there were still numerous sets of the standard deviation and the
mean value satisfying the above-mentioned requirement. Thus, the effect of the standard deviation and the
mean value on the size of the cavitation zone and the plastic zone (or the massive cavitation zone) was
analyzed. The analysis showed that as the mean value increased, the cavitation zone and the plastic zone
became smaller. Finally, a set of the standard deviation and the mean value which resulted in the com-
parable size and shape of the cavitation zone and the plastic zone to those observed in an experiment could
be determined.

By using the hydrostatic stress-controlled void nucleation model with the mean value and the standard
deviation determined in the above-mentioned manner, the material behavior of the rubber-modified epoxy
(DER331/Pip/CTBN-8(10)) was also analyzed around the notches in a symmetric double-edge double-
notched (SDEDN) specimen under four-point bending. The numerical analysis showed that no cavitation
occurred around the notch under compression, but a circular cavitation zone formed around the notch
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under tension. It also showed that the plastic deformation occurred in a limited area around the notch under
compression, but the plastic deformation occurred in a comparatively large area around the notch under
tension. These numerical results were in good agreement with the corresponding experimental results.

2. Constitutive law

2.1. New yield function for porous solids with pressure-sensitive matrices

The pressure-sensitivity of yielding of steels or polymers has been modeled by Coulomb’s yield function
in which yielding is assumed to occur when a linear combination of the effective stress and the hydrostatic
stress reaches the flow stress (Sternstein and Ongchin, 1969; Spitzig and Richmond, 1979; Kinloch and
Young, 1983), and the yield function is given as

se þ lrm ¼ so or re þ l0rm ¼ ro ð1Þ

Here, se is the effective shear stress, l is the pressure-sensitivity factor, rm is the hydrostatic stress, so is the
shear flow stress, re is the effective stress, l0 is

ffiffiffi
3

p
l, and ro is

ffiffiffi
3

p
so. Note here that ro is not the tensile flow

stress but the sum of the tensile flow stress and l0 times one third of it. Experiments showed that the
pressure-sensitivity factor ranges from 0.014 to 0.064 for steels (Spitzig et al., 1975, 1976), and from 0.10 to
0.25 for polymers (Kinloch and Young, 1983). Moreover, the phase transformation of zirconia-containing
ceramics can be also modeled by Coulomb’s yield function, and the pressure-sensitivity factor for the phase
transformation ranges from 0.55 to 0.93 (Yu and Shetty, 1989; Chen, 1991).

Gurson (1975, 1977) assumed a porous solid to have a periodic array of voids and to be an assembly of
identical spherical shells with voids at the center. He also assumed the matrix to be pressure-insensitive, i.e.
a von Mises material. Utilizing the upper bound approach for the spherical shell, Gurson (1975, 1977)
developed a yield function for the porous solid as follows.

UGðR; ro; f Þ ¼
Re

ro

� �2

þ 2f cosh
3Rm

2ro

� �
� 1� f 2 ¼ 0 ð2Þ

Here, R is the macroscopic Cauchy stress exerting on the porous solid, Re is the macroscopic effective stress,
Rm is the macroscopic hydrostatic stress, and f is the void volume fraction of the porous solid.

However, it is difficult to find a kinematically admissible velocity field for the spherical shell with the
pressure-sensitive matrix modeled by Coulomb’s yield function, and the upper bound approach cannot be
used. Instead, the hydrostatic yield stress can be found, using the equilibrium equation and Coulomb’s yield
function, i.e. the lower bound approach, and it is given as

Rmð Þy ¼
ro

l0 1
n

� f �2l0=ð3�2l0Þð Þ
o

ð3Þ

The positive sign in the exponent in Eq. (3) gives the positive hydrostatic yield stress, and the negative sign
gives the negative hydrostatic yield stress. Note that the absolute value of the negative hydrostatic yield
stress is always bigger than the positive hydrostatic yield stress. It can be proven from Eq. (3) that ðRmÞy
approaches �ð2=3Þro log f as l approaches 0. That is, 2f coshð3Rm=2roÞ approaches 1þ f 2, and Gurson’s
yield function is satisfied. However, when l is not equal to 0, 2f coshfð3þ signðRmÞ2l0Þ=ð2l0Þ logð1�
l0ðRm=roÞÞg becomes equal to 1þ f 2. In addition, a yield function for porous solids with pressure-sensitive
matrices should reduce to Gurson’s yield function when l is equal to 0, and it should reduce to Coulomb’s
yield function when f is equal to 0. Based on these requirements, a yield function could be proposed as
follows.
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UIðR; ro; f ; l0Þ ¼ Re

ro

� �2

þ 1

�
� l0 Rm

ro

�2

2f cosh
3þ sign Rmð Þ2l0

2l0 log 1

���
� l0 Rm

ro

��
� 1� f 2

	
¼ 0

ð4Þ

When Re ¼ 0, Eq. (4) results in ðRmÞy given in Eq. (3). In addition, as l (or l0) approaches 0, Eq. (4) reduces
to Eq. (2). When f becomes zero, Eq. (4) reduces to Eq. (1). Thus, the yield function in Eq. (4) satisfies the
above-mentioned requirements.

Meanwhile, the author (1992; Jeong and Pan, 1995) proposed a yield function for porous solids with
pressure-sensitive matrices as follows, and successfully used the yield function to analyze the material
behavior of a rubber-modified epoxy around a crack tip under the Mode I plane strain conditions.

UJðR; ro; f ; l0Þ ¼ Re þ l0Rm

ro

� �2

þ 2f cosh
3þ l0

2l0 log 1

��
� l0 Rm

ro

�	
� 1� f 2 ¼ 0 ð5Þ

However, when Rm becomes very negative, any positive Re satisfying Eq. (5) does not exist. That is, the
yield function is not defined for the negative hydrostatic stress. Lazzeri and Bucknall (1993) also proposed
a different yield function for porous solids with pressure matrices, and they successfully used their yield
function to calculate the angle of the shear band formed in a rubber-modified polymer under plane strain
deformation. However, their yield function is not defined for the negative hydrostatic stress, either. Al-
Abduljabbar and Pan (1999) used the yield function in Eq. (5) for the positive hydrostatic stress, but they
defined a linear yield function of Coulomb’s yield function type for the negative hydrostatic stress such that
at the zero hydrostatic stress it is continuous to the yield function in Eq. (5). The yield function Al-
Abduljabbar and Pan (1999) defined is given as follows.

UAðR; ro; f ; l0Þ ¼ Re þ l0Rm

ro

� �2

þ 2f � 1� f 2 ¼ 0 ð6Þ

Actually, the author (1992; Jeong and Pan, 1995), and Al-Abduljabbar and Pan (1999) incorporated three
parameters, which will be explained in the next section, in their yield functions, but the parameters are not
shown for the sake of brevity. Al-Abduljabbar and Pan (1999) successfully used the linear yield function in
Eq. (6) to analyze the material behavior of a rubber-modified epoxy because rubber particles do not
cavitate under the negative hydrostatic stress. Note that the effective stress satisfying Eq. (6) increases
linearly as the negative hydrostatic stress increases when l is not equal to 0, and it remains constant re-
gardless of the hydrostatic stress when l is equal to 0. That is, the yield function in Eq. (6) does not become
equal to Gurson’s yield function when l is equal to 0. Therefore, it can be said that even though the yield
function in Eq. (6) can be applied to a rubber-modified epoxy with no cavitation under the negative hy-
drostatic stress, it cannot be applied to porous solids with pressure-sensitive matrices under the negative
hydrostatic stress. However, the yield function in Eq. (4) can be applied to porous solids with pressure-
sensitive matrices under the negative hydrostatic stress as well as under the positive hydrostatic stress.

2.2. Interaction between voids

The yield function in Eq. (2) was obtained with no consideration of interaction between voids, and so was
the yield function in Eq. (4). This results from the fact that Gurson (1975, 1977) assumed a porous solid to be
an assembly of spherical shells, leaving space between them. Actually, in order to take into account the
interaction, it is necessary to adopt a voided cube instead of a spherical shell as shown in Fig. 1. Since it is
impossible to obtain analytically the yield stresses of a voided cube, the finite element method was used for a
voided cube with the matrix assumed to be almost rigid-perfectly plastic ðE=ro ¼ 2� 109). The cube being
subject to axisymmetric loading, the macroscopic hydrostatic stress and the macroscopic effective stress
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were obtained when massive plastic deformation occurred in the cube. The macroscopic stress invariants
were plotted as empty symbols in Fig. 2 after being normalized by ro. As expected, the macroscopic stress
invariants were located inside the loci defined by Eq. (4) (the loci shown in Fig. 2 were obtained from Eq. (7)).
This means that the interaction between voids helps the porous solid yield at lower loads. In order to fit
better the FEM results, three parameters (q1 ¼ 1:35, q2 ¼ 0:95, q3 ¼ 1:35) proposed by the author (1992)
were incorporated in Eq. (4) as follows.

UyðR; ro; f ; l0Þ ¼ Re

ro

� �2

þ 1

�
� l0 Rm

ro

�2

� 2q1f cosh q2
3þ sign Rmð Þ2l0

2l0 log 1

���
� l0 Rm

ro

��
� 1� q3f 2

	
¼ 0 ð7Þ

Fig. 1. (a) A spherical thick-walled shell model. (b) A voided cube model.
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Note that Tvergaard (1981, 1982a) introduced different values of parameters (q1 ¼ 1:5, q2 ¼ 1:0, q3 ¼ 2:25)
into Gurson’s yield function after comparing the plastic flow localization results of his finite element
computations with those of a continuum model based on Gurson’s yield function.

2.3. Modified yield function, FEM results and hydrostatic yield stresses

In Fig. 2(a)–(d), the yield function Uy (curves) along with the FEM results (empty symbols) and the
hydrostatic yield stresses ðRmÞy (solid symbols) are shown for four different void volume fractions and four
different pressure-sensitivity factors. It is noteworthy that the yield function Uy correlates well with the
FEM results for a wide range of the void volume fraction, the pressure-sensitivity factor and the hydrostatic
stress. The FEM results clearly show that a porous solid yields under hydrostatic pressure, and it yields at
higher hydrostatic pressure as l increases. The difference between the solid symbols and the empty symbols
located on the abscissa indicates the effect of interaction between voids on yielding. As shown in Fig. 2(a)–
(d), the effect increases as f or l increases, especially for the negative hydrostatic stress.

Fig. 2. (a) The yield function Uy, FEM results and ðRmÞy for f ¼ 0:01. (b) The yield function Uy, FEM results and ðRmÞy for f ¼ 0:05.

(c) The yield function Uy, FEM results and ðRmÞy for f ¼ 0:10. (d) The yield function Uy, FEM results and ðRmÞy for f ¼ 0:20.
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2.4. Plastic potential function

Experiments showed that during plastic deformation steels or polymers modeled by Coulomb’s yield
function dilate less than is predicted by the normality plastic flow rule (Spitzig et al., 1975, 1976; Spitzig and
Richmond, 1979). This means that the plastic potential function is not the same as the yield function. If the
dilatancy factor is denoted by b and the effective shear plastic strain is denoted by cpe , the volume increase of
the pressure-sensitive matrix during plastic deformation can be expressed as bcpe , and the plastic potential
function of the matrix can be defined as follows.

se þ brm ¼ sp ð8Þ

Note that the plastic potential function is the same as Coulomb’s yield function if l and so are replaced by b
and sp, respectively. Here, sp is the fictitious shear flow stress that makes the current stress state satisfy Eq.
(8). Gurson (1975) proved that if the matrix satisfies the normality flow rule, the porous solid also satisfies
it. This means that if the plastic flow of the matrix is normal to Eq. (1), the plastic flow of the porous solid is
normal to Eq. (7). By the same token, if the plastic flow of the matrix is normal to Eq. (8), the plastic flow of
the porous solid is normal to the plastic potential function UpðR; rp; f ; b

0Þ ¼ 0, which can be obtained from
the yield function UyðR;ro; f ; l0Þ ¼ 0 by replacing l0 and ro by b0 ð¼

ffiffiffi
3

p
bÞ and rp, respectively. Here, rp

is the fictitious flow stress that makes the current stress state satisfy UpðR; rp; f ; b
0Þ ¼ 0. Note that only

when l (or l0) is equal to b (or b0), the plastic potential function becomes the same as the yield function, and
plastic normality flow occurs.

2.5. Elastic relations

When the void volume fraction is large, its effect on the elastic moduli of a porous solid should be taken
into account. Adopting the self-consistent scheme combined with the average stress scheme (Tandon and
Weng, 1988), Young’s modulus E� and Poisson’s ratio m� of a porous solid could be calculated from those
of the matrix, E and m, and the void volume fraction f as follows.

E� ¼ 2Eð7� 5mÞð1� f Þ
14� 10m þ f ð1þ mÞð13� 15mÞ ð9Þ

m� ¼ mð14� 10mÞ þ f ð1þ mÞð3� 5mÞ
14� 10m þ f ð1þ mÞð13� 15mÞ ð10Þ

In modeling a rubber-modified epoxy of this paper f is the volume fraction of cavitated voids, E, m and
E�, m� are elastic moduli of the composite before and after cavitation, respectively.

2.6. Void nucleation models and void volume evolution equation

The increase of void volume arises both from the growth of existing voids and from the nucleation of
voids. As for the nucleation of voids, two models have been used; one is the stress-controlled void nu-
cleation model, and the other is the plastic strain-controlled void nucleation model. As for the stress-
controlled void nucleation model, the sum of the tensile flow stress and the macroscopic hydrostatic stress
was used as a controlling stress in many researches (e.g., Tvergaard, 1982b; Pan et al., 1983; Needleman and
Tvergaard, 1987; Jeong, 1992; Jeong and Pan, 1995, 1996). The sum was suggested to be an approximation
to the maximum stress transmitted across the particle–matrix interface, and void nucleation was believed to
depend on the maximum stress (Argon and Im, 1975). In this paper this void nucleation model is named the
maximum stress-controlled void nucleation model. Some experiments showed circular cavitation zones
around a crack tip in rubber-modified epoxies under the Mode I plane strain conditions (Pearson and Yee,
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1991), and the shape of the cavitation zones is similar to that of the contour plots of the macroscopic
hydrostatic stress. In addition, Lazzeri and Bucknall (1993, 2000) derived an equation for a critical volu-
metric strain required to cause cavitation, and they showed that the critical volumetric strain was in good
agreement with experimental results. With the assumption of linear elasticity for rubber particles, the
critical volumetric strain multiplied by the bulk modulus of the rubber particles results in the critical
hydrostatic stress required to cause cavitation. Thus, it is meaningful to investigate if the macroscopic
hydrostatic stress can be used as a controlling stress in modeling the void nucleation (cavitation) process.
This void nucleation model is named the hydrostatic stress-controlled void nucleation model.

Therefore, the void volume evolution equation can be expressed as follows.

_ff ¼ ð1� f Þ½trðDpÞ � b0 _eepe � þ A _rro þ B _RRm þ C _eepe ð11Þ

Here, the first term at the right side represents the void volume increase due to void growth, and the last
three terms represent the void volume increase due to void nucleation. In addition, trðDpÞ is the trace of the
rate-of-deformation tensor, and _eepe is the effective plastic strain rate. For the maximum stress-controlled
void nucleation model,

A ¼ B ¼ fN
sry

ffiffiffiffiffiffi
2p

p exp

"
� 1

2

ro þ Rm � rN

sry

� �2
#
; C ¼ 0 ð12Þ

However, for the hydrostatic stress-controlled void nucleation model,

A ¼ 0; B ¼ fN
sry

ffiffiffiffiffiffi
2p

p exp

"
� 1

2

Rm � rN

sry

� �2
#
; C ¼ 0 ð13Þ

Finally, for the plastic strain-controlled void nucleation model,

A ¼ B ¼ 0; C ¼ fN
s

ffiffiffiffiffiffi
2p

p exp

"
� 1

2

epe � eN
s

� �2
#

ð14Þ

Here, fN is the volume fraction of void nucleating particles, s and rN (or eN) are the standard deviation and
the mean value of the normal distribution function, respectively. In addition, A, B and C are set to zero
unless the controlling stress (or the controlling strain) is bigger than zero and its maximum value which
occurred in the previous deformation history. For example, when the macroscopic hydrostatic stress re-
mains negative through a deformation history, the hydrostatic stress-controlled void nucleation model does
not result in any void nucleation.

2.7. Strain rate sensitivity and strain softening-and-hardening

Some polymers show initial intrinsic strain softening and subsequent hardening (Haward, 1973) as well
as strain rate sensitivity (Bowden, 1973; Yee and Pearson, 1986). A simple power law with the strain rate
hardening exponent m was adopted as follows.

_eepe ¼ _eer
ro

gðepe Þ

� 	1=m
ð15Þ

Here, _eer is the reference tensile plastic strain rate, and the function gðepe Þ equals the flow stress ro of the
matrix when _eepe ¼ _eer. If _eepe is greater (or smaller) than _eer, ro becomes greater (or smaller) than gðepe Þ. To
model qualitatively the initial strain softening and subsequent hardening behavior of epoxies, a function
for gðepe Þ was proposed as follows.
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gðepe Þ ¼ ry

epe
ey

�"
þ 1

�N

þ C1

epe
ey

� �N1

log C2

epe
ey

� �#
ð16Þ

Here, N is the hardening exponent, N1 is a softening–hardening exponent, and C1 and C2 are two material
coefficients. In addition, ry is equal to

ffiffiffi
3

p
sy, where sy is the shear yield stress obtained at the reference shear

plastic strain rate _ccr ð¼
ffiffiffi
3

p
_eerÞ, and ey is ry=E. Note here that ro is equal to ry when epe ¼ 0 and _eepe ¼ _eer.

When C1 is equal to zero, Eq. (16) reduces to the usual power-law strain hardening equation.
For detailed derivations of the constitutive relations except the new yield function and the hydrostatic

stress-controlled void nucleation model, refer to the author’s previous papers (Jeong, 1992; Jeong and Pan,
1995).

3. Material behavior of a rubber-modified epoxy

3.1. Finite element models

The set of constitutive relations developed in the previous sections was implemented into ABAQUS as a
user material subroutine. This subroutine was used to analyze the material behavior of a rubber-modified
epoxy (DER331/Pip/CTBN-8(10)) around a crack and around double notches. Pearson and Yee (1986,
1991) conducted a four-point bending test on a double-cracked specimen to capture the material behavior
just prior to final failure under the Mode I plane strain conditions. In addition, Yee et al. (1993) conducted
a four-point bending test on an SDEDN specimen to investigate the material behavior around a notch
under tension and around the other notch under compression prior to final failure.

Due to symmetry, only the upper half around a crack under the Mode I plane strain loading was dis-
cretized to create inner and outer meshes as shown in Fig. 3(a) and (b). The outer radius of the outer mesh
was 10,000 times bigger than the crack-tip radius, and the small-scale yielding conditions were guaranteed.
In addition, an SDEDN specimen under four-point bending was discretized only for the left half as shown
in Fig. 4. The arrow represents the loading direction along which the bending crosshead moved at a rate of
1 mm/min. Note that the material around the upper notch was under compression, and the material around
the lower notch was under tension.

The material properties of the rubber-modified epoxy analyzed in this paper are E ¼ 2530 MPa,
m ¼ 0:428, ry ¼ 75 MPa, m ¼ 0:035, N ¼ 0:1, N1 ¼ 1:3, C1 ¼ 0:03, C2 ¼ 0:05, _eer ¼ 0:0032/sec, l ¼ 0:13,

Fig. 3. (a) Inner mesh around a crack under the Mode I plane strain conditions. (b) Outer mesh around a crack under the Mode I plane

strain conditions.
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b ¼ 0, and fN ¼ 0:12. These material properties were obtained mainly from the experimental results (Yee
and Pearson, 1986; Pearson and Yee, 1986). Note that during a simple shear test the hydrostatic stress
remains zero, and no cavitation occurs. In addition, ro is equal to ry when epe ¼ 0 and _eepe ¼ _eer, and ry can be
obtained from the shear yield stress as provided by ry ¼

ffiffiffi
3

p
sy. However, since there was no shear yield

stress available for the rubber-modified epoxy (DER331/Pip/CTBN-8(10)), by using Eq. (1) ry was cal-
culated from the tensile yield stress of the rubber-modified epoxy, which is about 70 MPa at _eer ¼ 0:0032/sec
(see Fig. 16 in Yee and Pearson, 1986).

ry ¼ 70þ 0:13�
ffiffiffi
3

p
� 70=3 ffi 75 MPa ð17Þ

Al-Abduljabbar and Pan (1999) considered rubber particles as voids from the very beginning of the de-
formation history, and they ignored the cavitation process. Thus, they used ry of the pure epoxy, and took
into account the reduction in ry due to addition of rubber particles by incorporating f of which the initial
value was equal to the volume fraction of rubber particles. It can be easily proven from Eqs. (4), (6) or (7)
that ry is reduced by a factor of 1� f or ð1� 2q1f þ q3f 2Þ1=2. Regarding rubber particles as voids, the yield
function in Eq. (7) was plotted along with experimental data of Kody and Lesser (1998) in Fig. 5. Note that
there is a noticeable difference between the yield function and the experimental data especially when the
volume fraction of rubber particles is large, and a similar amount of difference exists in the case of the yield
functions proposed by the author (1992; Jeong and Pan, 1995), and Al-Abduljabbar and Pan (1999). As
Kody and Lesser (1998) pointed out, there exists a bigger difference between the yield function proposed by
Lazzeri and Bucknall (1993) and the experimental data. However, a bigger difference mainly results from
the fact that there are no correction parameters such as q1, q2 and q3 included in the yield function. For the
analysis of this paper ry of the rubber-modified epoxy could have been approximated by reducing that of
the pure epoxy by a factor of ð1� 2q1f þ q3f 2Þ1=2, but it was calculated from the tensile yield stress of the
rubber-modified epoxy as in Eq. (17). Note again that in the analyses of this paper f is the volume fraction
of cavitated voids, which remains zero under the negative hydrostatic stress. When f is equal to zero, the
yield function in Eq. (7) becomes equal to Coulomb’s yield function, the correction parameters being
ignored. Therefore, for the analyses of this paper ry should represent the initial flow stress of the rubber-
modified epoxy, not that of the pure epoxy.

Fig. 4. FEM mesh for the SDEDN specimen.
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3.2. Cavitation zone and hydrostatic stress contour

Pearson and Yee (1991) obtained optical microscopies of the rubber-modified epoxy at the mid-plane
near the crack tip. Shown in Fig. 6 was a typical microscopy obtained with the critical stress intensity factor
KIC equal to 2.1 MPa

ffiffiffiffi
m

p
. Here, the plastic zone is baseball-bat shaped, formed along the crack line, and

the length of the plastic zone is about 600 lm. The cavitation zone is circular, surrounding the plastic zone,
and the diameter of the cavitation zone is about 1600 lm. It is noteworthy that rubber particles in the
plastic zone were massively cavitated. Based on these findings, Pearson and Yee (1991) claimed that rubber
particles became cavitated before noticeable plastic deformation occurred, and the rubber cavitation re-
lieved the hydrostatic stress, helping the epoxy matrix deform plastically. Thus, they concluded that the
massive plastic deformation was the major toughening mechanism of the rubber-modified epoxy.

Fig. 5. The comparison of the yield function Uy with the test data (Kody and Lesser, 1998), regarding rubber particles as voids.

Fig. 6. Optical micrograph of a thin section taken at the mid-plane near the crack tip in the rubber-modified epoxy (from Pearson and

Yee, 1991).
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From the asymptotic solutions of stress fields around a crack tip under the Mode I plane strain con-
ditions, the contour plot of the hydrostatic stress can be expressed in the polar coordinates as follows.

r ¼ dð1þ cos hÞ where d ¼ ð1þ mÞ2K2
I

9pR2
m

ð18Þ

A contour plot (a bigger solid line plot) of the hydrostatic stress and a circle which crosses the same in-
tersections on the x- and y-axes are shown in Fig. 7. It is easy to prove that the diameter of the circle is
equal to 2.5d. Since in the early stage of ductile fracture a crack grows in a stable manner, the contour plot
of a hydrostatic stress grows and advances (a small contour grows with the tip stably moving along the
crack line, and it becomes a bigger contour) as shown in Fig. 7. Thus, the edge of the contour plot becomes
almost circular like the cavitation zone observed in experiments. This implies that rubber particles cavitate
at a constant hydrostatic stress. The hydrostatic stress causing cavitation can be easily obtained from Eq.
(18) with 2:5d ¼ 1600 lm and KI ¼ 2:1 MPa

ffiffiffiffi
m

p
, and it is 22.3 MPa.

3.3. Material constants for the hydrostatic stress-controlled void nucleation model

Any void nucleation model of the normal distribution function type has three material constants to be
determined: the volume fraction of void nucleating particles such as rubber particles in the rubber-modified
epoxy, the mean value and the standard deviation. It is easy to determine the volume fraction of void
nucleating particles, but it is not so easy to determine the other two constants. Thus, in many researches
using one of the void nucleation models the mean value and the standard deviation were somewhat
arbitrarily determined (e.g., Chu and Needleman, 1980; Pan et al., 1983; Jeong and Pan, 1995, 1996).
However, in this paper the two constants were determined by comparing simulation results with experi-
mental results in terms of the size of the cavitation zone and the plastic zone. It would be possible to
measure the void volume fraction at the edge of the cavitation zone by taking a detailed microscopy, but
here it was assumed to be 0.005. If the mean value and the standard deviation are determined in such a way
that the probability of the normal distribution function from 0 to 22.3 MPa is close to 0.042, the volume
fraction of nucleated voids will be close to 0:005 ð¼ 0:042� fNÞ when the hydrostatic stress reaches 22.3
MPa. Five sets of the mean value and the standard deviation resulting in the probability of 0.042 were used
in the material behavior analyses around the crack tip under Mode I plane strain conditions; the five sets

Fig. 7. Contour plots of the hydrostatic stress and a circle crossing the same intersections.
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were rN ¼ 0:500ry, s ¼ 0:115; rN ¼ 0:725ry, s ¼ 0:250; rN ¼ 0:950ry, s ¼ 0:390; rN ¼ 1:175ry, s ¼ 0:565
and rN ¼ 1:400ry, s ¼ 0:770. The normal distribution functions in Eq. (13) with the first, third and last sets
were plotted in Fig. 8, and note that the area under each curve from 0 to 22.3 MPa is close to 0.005.

From the numerical simulations the void volume fraction f and the effective plastic strain Ep of the
rubber-modified epoxy were obtained when the crack opening displacement (COD) became about three
times the original COD. The contour plots of the void volume fraction are shown at the upper half, and the
contour plots of the equivalent plastic strain are shown at the lower half in Fig. 9 with the coordinates
normalized by ðKI=ryÞ2. Due to symmetry, the contour plots of the void volume fraction or the equivalent
plastic strain at the other half can be obtained by reflecting the contour plots with respect to the x-axis.
Note that when the COD becomes over 2.5 times the original COD, steady state solutions usually arise, and
the contour plots remain almost unchanged except within the area about a COD distance from a crack tip
(McMeeking, 1977). The normalized diameter of the cavitation zone and the normalized length of the
plastic zone observed in the experiment (Pearson and Yee, 1991) were 2.04 and 0.77, respectively. However,
the numerical simulation with rN ¼ 0:500ry, s ¼ 0:115 resulted in the normalized diameter of the cavitation
zone of 2.20 and the normalized length of the plastic zone of 0.87 as shown in Fig. 9(a). Even though the
mean value and the standard deviation were determined to result in the normalized size of the cavitation
zone of 2.04, the cavitation zone became slightly bigger because of void growth after nucleation. As shown
in Fig. 8, with this set of the mean value and the standard deviation, voids were supposed to nucleate at
relatively low hydrostatic stresses. Thus, nucleated voids grew in a large amount, and this was the reason
why in the simulation the cavitation zone became bigger than it was supposed to be, and the massive
cavitation zone (defined in this paper as a zone with f P 0:0525) became quite large. In addition, the plastic
zone obtained in this simulation is longer than that observed in the experiment. The numerical simulation
with rN ¼ 0:950ry, s ¼ 0:390 resulted in the normalized diameter of the cavitation zone of 2.05 and the
normalized length of the plastic zone of 0.76 as shown in Fig. 9(b). The size and the shape of the massive
cavitation zone are similar to those of the plastic zone. It is noteworthy that the size and the shape of the
cavitation zone and the plastic zone obtained in this simulation are in good agreement with those obtained
in the experiment. The numerical simulation with rN ¼ 1:400ry, s ¼ 0:770 resulted in the normalized di-
ameter of the cavitation zone of 2.03 and the normalized length of the plastic zone of 0.62 as shown in
Fig. 9(c). In this case, the size of the cavitation zone is very close to that of the experimental result, but the
size of the plastic zone is smaller than that of the experimental result.

For the sake of brevity, the contour plots for rN ¼ 0:725ry, s ¼ 0:250 and rN ¼ 1:175ry, s ¼ 0:565 are
not shown. However, the normalized diameters obtained from the simulations are 2.18 and 2.04, and the
normalized lengths are 0.86 and 0.68, respectively. Therefore, it can be said that as the mean value (or the

Fig. 8. Normal distribution functions for the hydrostatic stress-controlled void nucleation model.
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standard deviation) increases, the size of the cavitation zone and the plastic zone decreases. By comparing
the size of the cavitation zone and the length of the plastic zone obtained in the simulations with those
observed in the experiment, it can be concluded that the mean value and the standard deviation for the
hydrostatic stress-controlled void nucleation model should be rN ¼ 0:950ry, s ¼ 0:390 to properly model
the cavitation process occurring in the rubber-modified epoxy.

Fig. 9. (a) The contour plots of the void volume fraction and the effective plastic strain around the crack tip when the hydrostatic stress-

controlled void nucleation model with rN ¼ 0:500ry, s ¼ 0:115 is used. (b) The contour plots of the void volume fraction and the

effective plastic strain around the crack tip when the hydrostatic stress-controlled void nucleation model with rN ¼ 0:950ry, s ¼ 0:390

is used. (c) The contour plots of the void volume fraction and the effective plastic strain around the crack tip when the hydrostatic

stress-controlled void nucleation model with rN ¼ 1:400ry, s ¼ 0:770 is used.
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For the sake of comparison, the material behavior around the crack tip was also analyzed with the
maximum stress-controlled void nucleation model used. The mean value and the standard deviation for the
nucleation model were selected as rN ¼ 1:000ry, s ¼ 0:225 with no certain reason. The contour plots ob-
tained from the simulation were shown in Fig. 10. The plastic zone formed along the crack line, and the
cavitation zone surrounded the plastic zone as in the case of the hydrostatic stress-controlled void nucle-
ation model used. However, the cavitation zone was not circular, but bigger along the y-axis as Jeong and
Pan (1996) had already pointed out. The material behavior was also analyzed with the plastic strain-
controlled void nucleation model used. However, in this case the cavitation zone became almost the same
as the plastic zone, which was a lot smaller than the cavitation zone observed in the experiment. This is
another piece of evidence that rubber particles in the rubber-modified epoxy started to cavitate before
noticeable plastic deformation. Therefore, it is not appropriate to use either the maximum stress-controlled
void nucleation model or the plastic strain-controlled void nucleation model in the material behavior
analysis of the rubber-modified epoxy.

3.4. Material behavior around the notch tips

Al-Abduljabbar and Pan (1999) analyzed the material behavior of the rubber-modified epoxy in the
SDEDN specimen under four-point bending, which had been experimentally investigated by Yee et al.
(1993). Al-Abduljabbar and Pan (1999) assumed the rubber-modified epoxy to be a porous material from
the beginning of deformation with no consideration of the cavitation process, and they showed circular
contour plots of the hydrostatic stress around a notch under tension. However, in this paper the cavitation
process was regarded as void nucleation process, which was modeled by using the hydrostatic stress-con-
trolled void nucleation model with the mean value and the standard deviation determined in the previous
section.

The contour plots of the void volume fraction and the effective plastic strain were obtained from the
simulation when the crosshead moved downward by 1.6 mm. As shown in Fig. 11(a), a circular cavitation
zone formed only around the lower notch, and the diameter of the cavitation zone was about 3 mm. In

Fig. 10. The contour plots of the void volume fraction and the effective plastic strain around the crack tip when the maximum stress-

controlled void nucleation model with rN ¼ 1:000ry, s ¼ 0:225 is used.
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contrast, no cavitation occurred around the upper notch because the material around it was under the
negative hydrostatic stress throughout the deformation history. Note that inside the circular cavitation
zone a massive cavitation zone formed along the vertical direction. As shown in Fig. 11(b), the plastic zone
around the upper notch was smaller than that around the lower notch. Especially, the zone of Ep P 0:05
was quite small around the upper notch, but the zone was comparatively large around the lower notch,
forming along the vertical direction. Experimental results showed that a circular cavitation zone occurred
only around the lower notch, and inside the cavitation zone a plastic zone (or a massive cavitation zone)
formed along the vertical direction (see Fig. 8(e) in Yee et al. (1993)). The experimental results also showed
that the diameter of the cavitation zone was about 3 mm when the crosshead moved downward about 1.6
mm, and the plastic zone around the upper notch was quite small. Therefore, the simulation results are
in good agreement with the experimental results, and the constitutive relations, especially the new yield
function and the hydrostatic stress-controlled void nucleation model seem to be reasonable.

4. Conclusions

The new yield function developed in this paper is valid for porous solids with pressure-sensitive matrices
under the negative hydrostatic stress as well as under the positive hydrostatic stress. When the void volume
fraction is zero, the yield function becomes equal to Coulomb’s yield function. When the matrix is pressure-
insensitive, the yield function becomes equal to Gurson’s yield function, three correction parameters being
ignored. The yield function and the hydrostatic stress-controlled void nucleation model along with other
constitutive relations were used to simulate the material behavior of a rubber-modified epoxy. The hy-
drostatic stress-controlled void nucleation model was used to mathematically represent the cavitation
process occurring in a rubber-modified epoxy only under the positive hydrostatic stress.

Comparing the cavitation zone observed in an experiment with the contour plots of the hydrostatic stress
around a crack in a rubber-modified epoxy (DER331/Pip/CTBN-8(10)) under the Mode I plane strain
small-scale yielding conditions, the hydrostatic stress causing cavitation was determined, and it was 22.3
MPa. Five sets of the mean value and the standard deviation for the hydrostatic stress-controlled void
nucleation model were determined in a way that the void volume fraction would become 0.005 when the
hydrostatic stress changed from 0 to 22.3 MPa. They were used to analyze the cavitation and the plastic
deformation around a crack in the rubber-modified epoxy. As the mean value increases along with the

Fig. 11. (a) The contour plots of the void volume fraction in the SDEDN specimen. (b) The contour plots of the effective plastic strain

in the SDEDN specimen.
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standard deviation, the size of the cavitation zone and the plastic zone (and the massive cavitation zone)
decreases. By comparing the numerical results with the experimental results, a set of the mean value and the
standard deviation which resulted in almost the same size and shape of the cavitation zone and the plastic
zone could be selected.

The same set was used to analyze the material behavior of the rubber-modified epoxy around the double
notches in the SDEDN specimen under four-point bending. From this numerical simulation, a limited size
of the plastic zone was obtained around the notch under compression, and a bigger circular cavitation zone
with a massive cavitation zone formed inside of it was obtained around the notch under tension. It is
noteworthy that the size and the shape of the cavitation zone around the notch under tension obtained from
the numerical analysis were in agreement with those obtained from the experiment.

Al-Abduljabbar and Pan (1999) took no cavitation into account in their linear yield function for the
negative hydrostatic stress. However, in this paper the author took into account the cavitation process by
using the hydrostatic stress-controlled void nucleation model, which does not result in any void nucleation
under the negative hydrostatic stress. Three correction parameters being ignored, the yield function pro-
posed in this paper becomes equal to Coulomb’s yield function when there are no voids. Therefore, both
approaches are qualitatively the same except that cavitation zones could be obtained in the analyses of this
paper. However, both approaches will produce quite different results in a material behavior analysis of a
rubber-modified epoxy under cyclic loading. Suppose the SDEDN specimen shown in Fig. 4 is loaded in the
opposite direction after the crosshead moved down by 1.6 mm. When the material around the lower notch
is under compression, the material will have further plastic deformation even under the hydrostatic pressure
due to cavitated rubber particles if the yield function proposed in this paper is used. However, the material
will not have further plastic deformation under the hydrostatic pressure if the yield function proposed by
Al-Abduljabbar and Pan (1999) is used. When the material has further plastic deformation under com-
pression, the cavitated rubber particles will close up. This reduction of the void volume fraction can be
taken into account by Eq. (11) because trðDpÞ is negative and so is _ff . Note again that the FEM results
shown in Fig. 2 clearly show that a porous solid, in this case a rubber-modified epoxy with cavitated rubber
particles, yields under the hydrostatic pressure. Therefore, for the cyclic loading case it is more appropriate
to use the yield function proposed in this paper than the yield function proposed by Al-Abduljabbar and
Pan (1999). In the future, the material behavior of a rubber-modified epoxy under cyclic loading will be
analyzed.
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